
A comparison of the superbosonization formula and the generalized Hubbard–Stratonovich

transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 275206

(http://iopscience.iop.org/1751-8121/42/27/275206)

Download details:

IP Address: 171.66.16.154

The article was downloaded on 03/06/2010 at 07:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/27
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 275206 (23pp) doi:10.1088/1751-8113/42/27/275206

A comparison of the superbosonization formula and
the generalized Hubbard–Stratonovich transformation

Mario Kieburg, Hans-Jürgen Sommers and Thomas Guhr

Universität Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany

E-mail: mario.kieburg@uni-due.de

Received 13 February 2009, in final form 13 May 2009
Published 15 June 2009
Online at stacks.iop.org/JPhysA/42/275206

Abstract
Recently, two different approaches were put forward to extend the
supersymmetry method in random matrix theory from Gaussian ensembles to
general rotation invariant ensembles. These approaches are the generalized
Hubbard–Stratonovich transformation and the superbosonization formula.
Here, we prove the equivalence of both approaches. To this end, we reduce
integrals over functions of supersymmetric Wishart-matrices to integrals over
quadratic supermatrices of certain symmetries.

PACS numbers: 02.30.Px, 05.30.Ch, 05.30.−d, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The supersymmetry technique is a powerful method in random matrix theory and disordered
systems. For a long time it was thought to be applicable for Gaussian probability densities only
[1–4]. Due to universality on the local scale of the mean level spacing [5–8], this restriction
was not a limitation for calculating in quantum chaos and disordered systems. Indeed, results
of Gaussian ensembles are identical for large matrix dimension with other invariant matrix
ensembles on this scale. In the Wigner–Dyson theory [9] and its corrections for systems with
diffusive dynamics [10], Gaussian ensembles are sufficient. Furthermore, universality was
found on large scale, too [11]. This is of paramount importance when investigating matrix
models in high-energy physics.

There are, however, situations in which one cannot simply resort to Gaussian random
matrix ensembles. The level densities in high-energy physics [12] and finance [13] are needed
for non-Gaussian ensembles. But these one-point functions strongly depend on the matrix en-
semble. Other examples are bound-trace and fixed-trace ensembles [14], which are both norm-
dependent ensembles [15], as well as ensembles derived from a non-extensive entropy principle
[16–18]. In all these cases one is interested in the non-universal behavior on special scales.
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Recently, the supersymmetry method was extended to general rotation invariant
probability densities [15, 19–21]. There are two approaches. The first one is the generalized
Hubbard–Stratonovich transformation [15, 21]. With the help of a proper Dirac-distribution
in superspace an integral over rectangular supermatrices was mapped to a supermatrix integral
with non-compact domain in the fermion–fermion block. The second approach is the
superbosonization formula [19, 20] mapping the same integral over rectangular matrices
as before to a supermatrix integral with compact domain in the fermion–fermion block.

In this work, we prove the equivalence of the generalized Hubbard–Stratonovich
transformation with the superbosonization formula. The proof is based on integral identities
between supersymmetric Wishart-matrices and quadratic supermatrices. The orthogonal,
unitary and unitary-symplectic classes are dealt with in a unifying way.

The paper is organized as follows. In section 2, we give a motivation and introduce our
notation. In section 3, we define rectangular supermatrices and the supersymmetric version
of Wishart-matrices built up by supervectors. We also give a helpful corollary for the case
of arbitrary matrix dimension discussed in section 7. In sections 4 and 5, we present and
further generalize the superbosonization formula and the generalized Hubbard–Stratonovich
transformation, respectively. The theorem stating the equivalence of both approaches is given
in section 6 including a clarification of their mutual connection. In section 7, we extend both
theorems given in sections 4 and 5 to arbitrary matrix dimension. Details of the proofs are
given in the appendices.

2. Ratios of characteristic polynomials

We employ the notation defined in [21, 22]. Herm(β,N) is either the set of N × N real
symmetric (β = 1), N × N Hermitian (β = 2) or 2N × 2N self-dual (β = 4) matrices,
according to the Dyson-index β. We use the complex representation of the quaternionic
numbers H. Also, we define

γ1 =
{

1, β ∈ {2, 4}
2, β = 1,

γ2 =
{

1, β ∈ {1, 2}
2, β = 4

(2.1)

and γ̃ = γ1γ2.
The central objects in many applications of supersymmetry are averages over ratios of

characteristic polynomials [23–25]

Zk1k2(E
−) =

∫
Herm (β,N)

P (H)

∏k2
n=1 det(H − (En2 − ıε)11γ2N)∏k1
n=1 det(H − (En1 − ıε)11γ2N)

d[H ]

=
∫

Herm (β,N)

P (H)Sdet−1/γ̃
(
H ⊗ 11γ̃ (k1+k2) − 11γ2N ⊗ E−) d[H ], (2.2)

where P is a sufficiently integrable probability density on the matrix set Herm(β,N) invariant
under the group

U(β)(N) =
⎧⎨⎩

O(N), β = 1
U(N), β = 2
USp(2N), β = 4.

(2.3)

Here, we assume that P is analytic in its real independent variables. We use the same
measure for d[H ] as in [22] which is the product over all real independent differentials, see
also equation (4.11). Also, we define E = diag

(
E11, . . . , Ek11, E12, . . . , Ek22

) ⊗ 11γ̃ and
E− = E − ıε11γ̃ (k1+k2).
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The generating function of the k-point correlation function [15, 21, 26, 27]

Rk(x) = γ −k
2

∫
Herm (β,N)

P (H)

k∏
p=1

tr δ(xp − H) d[H ] (2.4)

is one application and can be computed starting from the matrix Green function and
equation (2.2) with k1 = k2 = k. Another example is the nth moment of the characteristic
polynomial [27–29]

Ẑn(x, μ) =
∫

Herm (β,N)

P (H)�(H)detn
(
H − E11γ2k

)
d[H ], (2.5)

where the Heavyside-function for matrices �(H) is unity if H is positive definite and zero
otherwise. [21]

With the help of Gaussian integrals, we get an integral expression for the determinants in
equation (2.2). Let �j be the Grassmann space of j -forms. We consider a complex Grassmann
algebra [30] � = ⊕2γ2Nk2

j=0 �j with γ2Nk2 pairs {ζjn, ζ
∗
jn}, 1 � n � k2, 1 � j � γ2N ,

of Grassmann variables and use the conventions of [22] for integrations over Grassmann
variables. Due to the Z2-grading, � is a direct sum of the set of commuting variables �0 and
of anticommuting variables �1. The body of an element in � lies in �0 while the Grassmann
generators are elements in �1.

Let ı be the imaginary unit. We take γ2Nk1 pairs {zjn, z
∗
jn}, 1 � n � k1, 1 � j � γ2N ,

of complex numbers and find for equation (2.2)

Zk1k2(E
−) = (2π)γ2N(k2−k1)ıγ2Nk2

∫
C

FP(K) exp(−ı Str BE−) d[ζ ] d[z], (2.6)

where d[z] = ∏k1
p=1

∏γ2N

j=1 dzjp dz∗
jp, d[ζ ] = ∏k2

p=1

∏γ2N

j=1(dζjp dζ ∗
jp) and C = C

γ2k1N ×
�2γ2Nk2 . The characteristic function appearing in (2.6) is defined as

FP(K) =
∫

Herm (β,N)

P (H) exp(ı tr HK) d[H ]. (2.7)

The two matrices

K = 1

γ̃
V †V and B = 1

γ̃
V V † (2.8)

are crucial for the duality between ordinary and superspace. While K is a γ2N ×γ2N ordinary
matrix whose entries have nilpotent parts, B is a γ̃ (k1 + k2) × γ̃ (k1 + k2) supermatrix. They
are composed of the rectangular γ2N × γ̃ (k1 + k2) supermatrix

V †|β �=2 = (
z1, . . . , zk1 , Y z∗

1, . . . , Y z∗
k1

, ζ1, . . . , ζk2 , Y ζ ∗
1 , . . . , Y ζ ∗

k2

)
,

V |β �=2 = (
z∗

1, . . . , z
∗
k1

, Y z1, . . . , Y zk1 ,−ζ ∗
1 , . . . ,−ζ ∗

k2
, Y ζ1, . . . , Y ζk2

)T
,

(2.9)
V †|β=2 = (

z1, . . . , zk1 , ζ1, . . . , ζk2

)
,

V |β=2 = (
z∗

1, . . . , z
∗
k1

,−ζ ∗
1 , . . . ,−ζ ∗

k2

)T
.

The transposition ‘T ’ is the ordinary transposition and is not the supersymmetric one. However,
the adjoint ‘†’ is the complex conjugation with the supersymmetric transposition ‘TS’

σTS =
[
σ11 σ12

σ21 σ22

]TS

=
[

σT
11 σT

21

−σT
12 σT

22

]
, (2.10)

where σ is an arbitrary rectangular supermatrix. We introduce the constant γ2N ×γ2N matrix

Y =
{

11N, β = 1
Y T

s ⊗ 11N, β = 4,
Ys =

[
0 1

−1 0

]
. (2.11)

3
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The crucial duality relation [15, 21]

tr Km = Str Bm, m ∈ N (2.12)

holds, connecting invariants in ordinary and superspace. AsFP inherits the rotation invariance
of P, the duality relation (2.12) yields

Zk1k2(E
−) = (2π)γ2N(k2−k1)ıγ2Nk2

∫
C

�(B) exp(−ı Str BE−) d[ζ ] d[z]. (2.13)

Here, � is a supersymmetric extension of a representation FP0 of the characteristic function,

�(B) = FP0(Str Bm|m ∈ N) = FP0(tr Km|m ∈ N) = FP(K). (2.14)

The representation FP0 is not unique [31]. However, the integral (2.13) is independent of a
particular choice [21].

The supermatrix B fulfils the symmetry

B∗ =
{
ỸBỸ T , β ∈ {1, 4}
ỸB∗Ỹ T , β = 2,

(2.15)

with the supermatrices

Ỹ |β=1 =
⎡⎣ 0 11k1 0

11k1 0 0
0 0 Ys ⊗ 11k2

⎤⎦ , Ỹ |β=4 =
⎡⎣Ys ⊗ 11k1 0 0

0 0 11k2

0 11k2 0

⎤⎦ (2.16)

and Ỹ |β=2 = 11k1+k2 and is self-adjoint for every β. Using the π/4-rotations

U |β=1 = 1√
2

⎡⎣ 11k1 11k1 0
−ı11k1 ı11k1 0

0 0
√

2112k2

⎤⎦ , U |β=4 = 1√
2

⎡⎣
√

2112k1 0 0
0 11k2 11k2

0 −ı11k2 ı11k2

⎤⎦
(2.17)

and U |β=2 = 11k1+k2 , B̂ = UBU † lies in the well-known symmetric superspaces [32],

�̃
(†)
β,γ1k1,γ2k2

=
{

σ ∈ Mat(γ̃ k1/γ̃ k2)

∣∣∣∣∣σ † = σ, σ ∗ =
{
Ŷγ1k1,γ2k2σ Ŷ T

γ1k1,γ2k2
, β ∈ {1, 4}

Ŷk1k2σ
∗Ŷ T

k1k2
, β = 2

}}
(2.18)

where

Ŷpq |β=1 =
[

11p 0
0 Ys ⊗ 11q

]
, Ŷpq |β=2 = 11p+q and

Ŷpq |β=4 =
[
Ys ⊗ 11p 0

0 11q

]
. (2.19)

The set Mat(p/q) is the set of (p + q) × (p + q) supermatrices on the complex Grassmann
algebra

⊕2pq

j=0 �j . The entries of the diagonal blocks of an element in Mat(p/q) lie in �0

whereas the entries of the off-diagonal block are elements in �1.
The rectangular supermatrix V̂ † = V †U † is composed of real, complex or quaternionic

supervectors whose adjoints form the rows. They are given by


†
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

({√2 Re zjn,
√

2 Im zjn}1�n�k1 , {ζjn, ζ
∗
jn}1�n�k2), β = 1,

({zjn}1�n�k1 , {ζjn}1�n�k2), β = 2,⎛⎝{
zjn −z∗

j+N,n

zj+N,n z∗
jn

}
1�n�k1

,

{
ζ

(−)
jn ζ

(+)
jn

ζ
(−)∗
jn ζ

(+)∗
jn

}
1�n�k2

⎞⎠ , β = 4,

(2.20)
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respectively, where ζ
(±)
jn = ı(1±1)/2(ζjn ± ζ ∗

j+N,n)/
√

2. Then, the supermatrix B̂ acquires the
form

B̂ = 1

γ̃

N∑
j=1

j
†
j . (2.21)

The integrand in equation (2.13)

F(B̂) = �(B̂) exp(−ı Str EB̂) (2.22)

comprises a symmetry breaking term,

∃ U ∈ U(β)(γ1k1/γ2k2) that F(B̂) �= F(UB̂U †), (2.23)

according to the supergroup

U(β)(γ1k1/γ2k2) =
⎧⎨⎩

UOSp(+)(2k1/2k2), β = 1
U(k1/k2), β = 2
UOSp(−)(2k1/2k2), β = 4.

(2.24)

We use the notation of [22, 33] for the representations UOSp(±) of the supergroup UOSp.
These representations are related to the classification of Riemannian symmetric superspaces
by Zirnbauer [32]. The index ‘+’ in equation (2.24) refers to real entries in the boson–boson
block and to quaternionic entries in the fermion–fermion block and ‘−’ indicates the other
way around.

3. Supersymmetric Wishart-matrices and some of their properties

We generalize the integrand (2.22) to arbitrary sufficiently integrable superfunctions on
rectangular (γ2c + γ1d) × (γ2a + γ1b) supermatrices V̂ on the complex Grassmann-algebra
� = ⊕2(ad+bc)

j=0 �j . Such a supermatrix

V̂ = (


(C)
11 , . . . , 

(C)
a1 , 

(C)
12 , . . . , 

(C)
b2

) = (


(R)∗
11 , . . . , 

(R)∗
c1 , 

(R)∗
12 , . . . , 

(R)∗
d2

)TS (3.1)

is defined by its columns


(C)†
j1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

({xjn}1�n�c, {χjn, χ
∗
jn}1�n�d), β = 1,

({zjn}1�n�c, {χjn}1�n�d), β = 2,⎛⎝{
zjn1 −z∗

jn2

zjn2 z∗
jn1

}
1�n�c

,

{
χjn

χ∗
jn

}
1�n�d

⎞⎠ , β = 4,

(3.2)


(C)†
j2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝{
ζjn

ζ ∗
jn

}
1�n�c

,

{
z̃jn1 −z̃∗

jn2

z̃jn2 z̃∗
jn1

}
1�n�d

⎞⎠ , β = 1,

({ζjn}1�n�c, {z̃jn}1�n�d), β = 2,

({ζjn, ζ
∗
jn}1�n�c, {yjn}1�n�d), β = 4,

(3.3)

or by its rows


(R)†
j1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({xnj }1�n�a, {ζ ∗

nj ,−ζnj }1�n�b), β = 1,

({z∗
nj }1�n�a, {ζ ∗

nj }1�n�b), β = 2,({
z∗
nj1 z∗

nj2

−znj2 znj1

}
1�n�a

,

{
ζ ∗
nj

−ζnj

}
1�n�b

)
, β = 4,

(3.4)
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(R)†
j2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝{−χ∗
nj

χnj

}
1�n�a

,

{
z̃∗
nj1 z̃∗

nj2

−z̃nj2 z̃nj1

}
1�n�b

⎞⎠ , β = 1,

({−χ∗
nj }1�n�a, {z̃∗

nj }1�n�b), β = 2,

({−χ∗
nj , χnj }1�n�a, {ynj }1�n�b), β = 4

(3.5)

which are real, complex and quaternionic supervectors. We use the complex Grassmann
variables χmn and ζmn and the real numbers xmn and ymn. Also, we introduce the complex
numbers zmn, z̃mn, zmnl and z̃mnl . The (γ2c + γ1d) × (γ2c + γ1d) supermatrix B̂ = γ̃ −1V̂ V̂ †

can be written in the columns of V̂ as in equation (2.21). As this supermatrix has a form
similar to the ordinary Wishart-matrices, we refer to it as supersymmetric Wishart-matrix.
The rectangular supermatrix above fulfils the property

V̂ ∗ = Ŷcd V̂ Ŷ T
ab. (3.6)

The corresponding generating function (2.2) is an integral over a rotation invariant
superfunction P on a superspace, which is sufficiently convergent and analytic in its real
independent variables,

Zab
cd (E−) =

∫
�̃

(−ψ)

β,ab

P (σ )Sdet−1/γ̃
(
σ ⊗ �̂

(C)
2ψ − 11γ2a+γ1b ⊗ E−) d[σ ], (3.7)

where

E− = diag
(
E11 ⊗ 11γ2 , . . . , Ec1 ⊗ 11γ2 , E12 ⊗ 11γ1 , . . . , Ed2 ⊗ 11γ1

) − ıε11γ2c+γ1d . (3.8)

Let �̃
0(†)
β,ab be a subset of �̃

(†)
β,ab. The entries of elements in �̃

0(†)
β,ab lie in �0 and �1. The set

�̃
(−ψ)

β,ab = �̂
(R)
−ψ�̃

0(†)
β,ab�̂

(R)
−ψ is the Wick-rotated set of �̃

0(†)
β,ab by the generalized Wick-rotation

�̂
(R)
−ψ = diag

(
11γ2a, e−ıψ/211γ1b

)
. As in [21], we introduce such a rotation for the convergence

of the integral (3.7). The matrix �̂
(C)
2ψ = diag

(
11γ2c, eıψ11γ1d

)
is also a Wick-rotation.

In the rest of our work, we restrict the calculations to a class of superfunctions. These
superfunctions has a Wick-rotation such that the integrals are convergent. We have not
explicitly analyzed the class of such functions. However, this class is very large and sufficient
for physical interests. We consider the probability distribution

P(σ) = f (σ) exp(−Str σ 2m), (3.9)

where m ∈ N and f is a superfunction which does not increase so fast as exp(Str σ 2m) in the
infinity, in particular

lim
ε→∞P(ε eıασ ) = 0 ⇔ lim

ε→∞ exp(−ε eıα Str σ 2m) = 0 (3.10)

for every angle α ∈ [0, 2π ]. Then, a Wick-rotation exists for P.
To guarantee the convergence of the integrals below, let V̂ψ = �̂

(C)
ψ V̂ , V̂

†
−ψ = V̂ †�̂(C)

ψ and

B̂ψ = �̂
(C)
ψ B̂�̂

(C)
ψ . Considering a function f on the set of supersymmetric Wishart-matrices,

we give a lemma and a corollary which are of equal importance for the superbosonization
formula and the generalized Hubbard–Startonovich transformation. For b = 0, the lemma
presents the duality relation between the ordinary and superspace (2.12) which is crucial for
the calculation of (2.2). This lemma was proven in [20] by representation theory. Here, we
only state it.

Lemma 3.1. Let f be a superfunction on rectangular supermatrices of the form (3.1) and
invariant under

f
(
V̂ψ , V̂

†
−ψ

) = f
(
V̂ψU †, UV̂

†
−ψ

)
, (3.11)

6
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for all V̂ and U ∈ U(β)(a/b). Then, there is a superfunction F on the U(β)(c/d)-symmetric
supermatrices with

F(B̂ψ) = f
(
V̂ψ , V̂

†
−ψ

)
. (3.12)

The U(β)(c/d)-symmetric supermatrices are elements of �̃
(†)
β,ab. The invariance condition

(3.11) implies that f only depends on the rows of V̂ψ by 
(R)†
nr (R)

ms for arbitrary n,m, r and s.
These scalar products are the entries of the supermatrix V̂ψ V̂

†
−ψ which leads to the statement.

The corollary below is an application of integral theorems by Wegner [34] worked
out in [35, 36] and of theorems III.1, III.2 and III.3 in [22]. It states that an integration
over supersymmetric Wishart-matrices can be reduced to integrations over supersymmetric
Wishart-matrices comprising a lower dimensional rectangular supermatrix. In particular for
the generating function, it reflects the equivalence of the integral (3.7) with an integration over
smaller supermatrices [22]. We assume that ã = a − 2(b − b̃)/β � 0 with

b̃ =
{

1, β = 4 and b ∈ 2N0 + 1
0, else.

(3.13)

Corollary 3.2. Let F be the superfunction of lemma 3.1, real analytic in its real independent
entries and a Schwartz-function. Then, we find∫

R

F(B̂ψ) d[V̂ ] = C

∫
R̃

F(B̃ψ) d[Ṽ ], (3.14)

where B̃ = γ̃ −1Ṽ Ṽ . The sets are R = R
βac+4bd/β ×�2(ad+bc) and R̃ = R

βãc+4b̃d/β ×�2(ãd+b̃c),
the constant is

C =
[
−γ1

2

](b−b̃)c [γ2

2

](a−ã)d

(3.15)

and the measure

d[V̂ ] =
∏

1�m�a

1�n�c

1�l�β

dxmnl

∏
1�m�b

1�n�d

1�l�4/β

dymnl

∏
1�m�b

1�n�c

dζmn dζ ∗
mn

∏
1�m�a

1�n�d

dχmn dχ∗
mn. (3.16)

The (γ2c + γ1d) × (γ2ã + γ1b̃) supermatrix Ṽ and its measure d[Ṽ ] is defined analogous to V̂

and d[V̂ ], respectively. Here, xmna and ymna are the independent real components of the real,
complex and quaternionic numbers of the supervectors 

(R)
j1 and 

(R)
j2 , respectively.

Proof. We integrate F over all supervectors 
(R)
j1 and 

(R)
j2 except 

(R)
11 . Then,∫

R′
F
(
VψV

†
−ψ

)
d[V̂�=11] (3.17)

only depends on 
(R)†
11 

(R)
11 . The integration set is R′ = R

βa(c−1)+4bd/β × �2(ad+b(c−1)) and
the measure d[V̂�=11] is d[V̂ ] without the measure for the supervector 

(R)
11 . With the help of

the theorems in [22, 34–36], the integration over 
(R)
11 is up to a constant equivalent to an

integration over a supervector ̃
(R)
11 . This supervector is equal to 

(R)
11 in the first ã th entries

and else zero. We repeat this procedure for all other supervectors reminding that we only
need the invariance under the supergroup action U(β)(b − b̃/b − b̃) on f as in equation (3.11)
embedded in U(β)(a/b). This invariance is preserved in each step due to the zero entries in
the new supervectors. �

7
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This corollary allows us to restrict our calculation on supermatrices with b = 1 only to
β = 4 and b = 0 for all β. Only the latter case is of physical interest. Thus, we give the
computation for b = 0 in the following sections and consider the case b = 1 in section 7. For
b = 0 we omit the Wick-rotation for B̂ as it is done in [15, 21] due to the convergence of the
integral (3.7).

4. The superbosonization formula

We need for the following theorem the definition of the sets

�1,pq =

⎧⎪⎨⎪⎩σ =

⎡⎢⎣ σ1 η η∗

−η† σ21 σ
(1)
22

ηT σ
(2)
22 σT

21

⎤⎥⎦∈ Mat(p/2q)
∣∣σ †

1 = σ ∗
1 = σ1 with positive definite body

σ
(1)T
22 = −σ

(1)
22 , σ

(2)T
22 = −σ

(2)
22

⎫⎪⎬⎪⎭ , (4.1)

�2,pq =
{
σ =

[
σ1 η

−η† σ2

]
∈ Mat(p/q)

∣∣σ †
1 = σ1 with positive definite body

}
, (4.2)

�4,pq =
⎧⎨⎩σ =

⎡⎣ σ11 σ12 η

−σ ∗
12 σ ∗

11 η∗

−η† ηT σ2

⎤⎦ ∈ Mat(2p/q)
∣∣σ †

1 = σ1 =
[

σ11 σ12

−σ ∗
12 σ ∗

11

]

with positive definite body, σ2 = σT
2

⎫⎬⎭ . (4.3)

Also, we will use the sets

�
(†)
β,pq = {

σ ∈ �β,pq

∣∣σ †
2 = σ2

} = �̃
(†)
β,pq ∩ �β,pq (4.4)

and

�
(c)
β,pq = {σ ∈ �β,pq |σ2 ∈ CU(4/β)(q)}, (4.5)

where CU(β) (q) is the set of the circular orthogonal (COE, β = 1), unitary (CUE, β = 2) or
unitary-symplectic (CSE, β = 4) ensembles,

CU(β) (q) =
⎧⎨⎩A ∈ Gl(γ2q, C)

∣∣∣∣∣∣
A = AT ∈ U(2)(q), β = 1
A ∈ U(2)(q), β = 2
A = (Ys ⊗ 11q)A

T
(
Y T

s ⊗ 11q

) ∈ U(2)(2q), β = 4

⎫⎬⎭ . (4.6)

The index ‘†’ in equation (4.4) refers to the self-adjointness of the supermatrices and the index
‘c’ indicates the relation to the circular ensembles. We note that the set classes presented above
differ in the fermion–fermion block. In section 6, we show that this is the crucial difference
between both methods. Due to the nilpotence of B’s fermion–fermion block, we can change
the set in this block for the Fourier-transformation. The sets of matrices in the sets above with
entries in �0 and �1 are denoted by �0

β,pq,�
0(†)
β,pq and �

0(c)
β,pq , respectively.

The proof of the superbosonization formula [19, 20] given below is based on the proofs of
the superbosonization formula for arbitrary superfunctions on real supersymmetric Wishart-
matrices in [19] and for Gaussian functions on real, complex and quaternionic Wishart-matrices

8
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in [37]. This theorem extends the superbosonization formula of [20] to averages of square
roots of determinants over unitary-symplectically invariant ensembles, i.e. β = 4, b = c = 0
and d odd in equation (3.7). The proof of this theorem is given in appendix A.

Theorem 4.1 (Superbosonization formula). Let F be a conveniently integrable and analytic
superfunction on the set of (γ2c + γ1d) × (γ2c + γ1d) supermatrices and

κ = a − c + 1

γ1
+

d − 1

γ2
. (4.7)

With

a � c, (4.8)

we find∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C
(β)

acd

∫
�

0(c)
β,cd

F (ρ) exp(−ε Str ρ)Sdetρκ d[ρ], (4.9)

where the constant is

C
(β)

acd = (−2πγ1)
−ad

(
−2π

γ2

)cd

2−cγ̃ βac/2 vol(U(β)(a))

vol(U(β)(a − c))

d∏
n=1

�(γ1κ + 2(n − d)/β)

ı4(n−1)/βπ2(n−1)/β
.

(4.10)

We define the measure d[V̂ ] as in corollary 3.2 and the measure on the right-hand side is
d[ρ] = d[ρ1] d[ρ2] d[η] where

d[ρ1] =
c∏

n=1

dρnn1 ×

⎧⎪⎨⎪⎩
∏

1�n<m�c dρnm1, β = 1,∏
1�n<m�c d Re ρnm1d Im ρnm1, β = 2,∏
1�n<m�c d Re ρnm11 d Im ρnm11 d Re ρnm12 d Im ρnm12, β = 4,

(4.11)

d[ρ2] = FU(4/β)

d |�d(e
ıϕj )|4/β

d∏
n=1

d eıϕn

2πı
dμ(U), (4.12)

d[η] =
c∏

n=1

d∏
m=1

(dηnm dη∗
nm). (4.13)

Here, ρ2 = Udiag (eıϕ1 , . . . , eıϕd ) U †, U ∈ U(4/β) (d) and dμ(U) is the normalized Haar-
measure of U(4/β) (d). We introduce the volumes of the rotation groups

vol(U(β)(n)) =
n∏

j=1

2πβj/2

� (βj/2)
(4.14)

and the ratio of volumes of the group flag manifold and the permutation group

FU(4/β)

d = 1

d!

d∏
j=1

π2(j−1)/β�(2/β)

�(2j/β)
. (4.15)

The absolute value of the Vandermonde determinant �d(eıϕj ) = ∏
1�n<m�d (eıϕn − eıϕm)

refers to a change of sign in every single difference (eıϕn − eıϕm) with ‘+’ if ϕm < ϕn and with
‘−’ otherwise. Thus, it is not an absolute value in the complex plane.

9
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The exponential term can also be shifted in the superfunction F. We need this additional
term to regularize an intermediate step in the proof.

The inequality (4.8) is crucial. For example, let β = 2 and F(ρ) = 1. Then, the left-hand
side of equation (4.9) is not equal to zero. On the right-hand side of equation (4.9), the
dependence on the Grassmann variables only stems from the superdeterminant and we find∫

�2cd

Sdetρκ d[η] =
∫

�2cd

det
(
ρ1 + ηρ−1

2 η†)κ
det ρκ

2

d[η] = 0 (4.16)

for κ < d. The superdeterminant Sdetρ is a polynomial of order 2c in the Grassmann variables
{ηnm, η∗

nm} and the integral over the remaining variables is finite for κ � 0. Hence, it is easy
to see that the right-hand side of equation (4.9) is zero for κ < d. This inequality is equivalent
to a < c.

This problem was also discussed in [31]. These authors gave a solution for the case that
(4.8) is violated. This solution differs from our approach in section 7.

5. The generalized Hubbard–Stratonovich transformation

The following theorem is proven in a way similar to [15, 21]. The proof is given in appendix
B. We need the Wick-rotated set �

(ψ)

β,cd = �̂
(C)
ψ �

0(†)
β,cd�̂

(C)
ψ , particularly �

(0)
β,cd = �

0(†)
β,cd . The

original extension of the Hubbard–Stratonovich transformation [15, 21] was only given for
γ2c = γ1d = γ̃ k. Here, we generalize it to arbitrary c and d.

Theorem 5.1 (Generalized Hubbard–Stratonovich transformation). Let F and κ be the
same as in theorem 4.1. If the inequality (4.8) holds, we have∫

R

F(B̂) exp(−ε Str B̂) d[] = C̃
(β)

acd

∫
�

(ψ)

β,cd

F (ρ̂) exp(−ε Str ρ̂) det ρκ
1

(
e−ıψdD

(4/β)

dr2

)a−c

× δ(r2)

|�d(eıψ r2)|4/β
e−ıψcd d[ρ]

= C̃
(β)

acd

∫
�

(0)
β,cd

det ρκ
1

δ(r2)

|�d(r2)|4/β

(
(−1)dD

(4/β)

dr2

)a−c

× F(ρ̂) exp(−ε Str ρ̂)|ψ=0d[ρ] (5.1)

with

ρ̂ =
[

ρ1 eıψ/2ρη

−eıψ/2ρ†
η eıψ

(
ρ2 − ρ†

ηρ
−1
1 ρη

)] . (5.2)

The variables r2 are the eigenvalues of the supermatrix ρ2. The measure d[ρ] =
d[ρ1] d[ρ2] d[η] is defined by equations (4.11) and (4.13). For the measure d[ρ2] we take
the definition (4.11) for 4/β. The differential operator in equation (5.1) is an analog of the
Sekiguchi-differential operator [38] and has the form [21]

D
(4/β)

dr2
= 1

�d(r2)
det

[
rd−m
n2

(
∂

∂rn2
+ (d − m)

2

β

1

rn2

)]
1�n,m�d

. (5.3)

The constant is

C̃
(β)

acd = 2−c (2πγ1)
−ad

(
2π

γ2

)cd

γ̃ βac/2 vol(U(β)(a))

vol(U(β)(a − c))FU(4/β)

d

. (5.4)

Since the diagonalization of ρ2 yields |�d(r2)|4/β in the measure, the ratio of the Dirac-
distribution with the Vandermonde-determinant is for Schwartz-functions on Herm(4/β, d)

10
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well defined. Also, the action of D
(4/β)

dr2
on such a Schwartz-function integrated over the

corresponding rotation group is finite at zero.
The distribution in the fermion–fermion block in equation (5.1) takes for β ∈ {1, 2} the

simpler form [15, 21]

(
D

(4/β)

dr2

)a−c δ(r2)

|�d(r2)|4/β
= FU(4/β)

d

d∏
n=1

� (a − c + 1 + 2(n − 1)/β)

(−π)2(n−1)/β� (γ1κ)

d∏
n=1

∂γ1κ−1

∂r
γ1κ−1
n2

δ(r2n). (5.5)

This expression written as a contour integral is the superbosonization formula [39]. For
β = 4, we do not find such a simplification due to the term |�(r2)| as the Jacobian in the
eigenvalue-angle coordinates.

6. Equivalence of and connections between the two approaches

Above, we have argued that both expressions in theorems 4.1 and 5.1 are equivalent for
β ∈ {1, 2}. Now we address all β ∈ {1, 2, 4}. The theorem below is proven in appendix C.
The proof treats all three cases in a unifying way. Properties of the ordinary matrix Bessel
functions are used.

Theorem 6.1 (Equivalence of theorems 4.1 and 5.1). The superbosonization formula,
4.1, and the generalized Hubbard–Stratonovich transformation, 5.1, are equivalent for
superfunctions which are Schwartz-functions and analytic in the fermionic eigenvalues.

The compact integral in the fermion–fermion block of the superbosonization formula can
be considered as a contour integral. In the proof of theorem 6.1, we find the integral identity∫

[0,2π]d
F̃ (eıϕj )|�d(e

ıϕj )|4/β

d∏
n=1

eı(1−γ1κ)ϕn dϕn

2π

=
d∏

n=1

ı4(n−1)/β�(1 + 2n/β)

�(2/β + 1)�(γ1κ − 2(n − 1)/β)

(
D

(4/β)

dr2

)a−c
F̃ (r2)

∣∣
r2=0 (6.1)

for an analytic function F̃ on C
d with permutation invariance. Hence, we can relate both

constants (4.10) and (5.4),

C̃
(β)

acd

C
(β)

acd

= (−1)d(a−c)

d∏
n=1

ı4(n−1)/β�(1 + 2n/β)

�(2/β + 1)�(γ1κ − 2(n − 1)/β)
. (6.2)

The integral identity (6.1) is a reminiscent of the residue theorem. It is the analog of the
connection between the contour integral and the differential operator in the cases β ∈ {1, 2}, see
figure 1. Thus, the differential operator with the Dirac-distribution in the generalized Hubbard–
Stratonovich transformation restricts the non-compact integral in the fermion–fermion block to
the point zero and its neighborhood. Therefore it is equivalent to a compact fermion–fermion
block integral as appearing in the superbosonization formula.

7. The general case for arbitrary positive integers a, b, c, d and arbitrary
Dyson-index β ∈ {1, 2, 4}
We consider an application of our results. The inequality (4.8) reads

N � γ1k (7.1)
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Figure 1. In the superbosonization formula, the integration of the fermionic eigenvalues is along
the unit circle in the complex plane (dotted circle). The eigenvalue integrals in the generalized
Hubbard–Stratonovich transformation are integrations over the real axis (bold line) or on the Wick-
rotated real axis (thin line at angle ψ) if the differential operator acts on the superfunction or on
the Dirac-distribution at zero (bold dot, 0), respectively.

for the calculation of the k-point correlation function (2.4) with the help of the matrix Green
function. For β = 1, a N × N real symmetric matrix has in the absence of degeneracies
N different eigenvalues. However, we can only calculate k-point correlation functions with
k < N/2. For N → ∞, this restriction does not matter. But for exact finite N calculations,
we have to modify the line of reasoning.

We construct the symmetry operator

S (σ ) = S

([
σ11 σ12

σ21 σ22

])
=

[−σ22 −σ21

σ12 σ11

]
(7.2)

from (m1 + m2) × (n1 + n2) supermatrix to (m2 + m1) × (n2 + n1) supermatrix. This operator
has the properties

S(σ †) = S(σ )†, (7.3)

S(σ ∗) = S(σ )∗, (7.4)

S2(σ ) = −σ, (7.5)

S

([
σ11 σ12

σ21 σ22

] [
ρ11 ρ12

0 0

])
= S

([
σ11 σ12

σ21 σ22

])
S

([
ρ11 ρ12

0 0

])
. (7.6)

Let a, b, c, d be arbitrary positive integers and β ∈ {1, 2, 4}. Then, the equation (7.6)
reads for a matrix product of a (γ2c + γ1d)×(0 + γ1b) supermatrix with a (0 + γ1b)×(γ2c + γ1d)

supermatrix [
ζ †

z̃†

]
[ζ z̃] = S

([
z̃†

−ζ †

])
S([z̃ ζ ]) = S

([
z̃†

−ζ †

]
[z̃ ζ ]

)
. (7.7)

With the help of the operator S, we split the supersymmetric Wishart-matrix B̂ into two parts,

B̂ = B̂1 + S(B̂2) (7.8)

such that

B̂1 = γ̃ −1
a∑

j=1


(C)
j1 

(C)†
j1 and B̂2 = γ̃ −1

b∑
j=1

S
(


(C)
j2

)
S
(


(C)
j2

)†
. (7.9)
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The supervectors S
(


(C)
j2

)
are of the same form as 

(C)
j1 . Let σ be a quadratic supermatrix,

i.e. m1 = n1 and m2 = n2. Then, we find the additional property

SdetS(σ ) = (−1)m2 Sdet−1σ. (7.10)

Let �̂
(0)
β,pq = S

(
�

(0)
β,pq

)
, �̂

0(c)
β,pq = S

(
�

0(c)
β,pq

)
and the Wick-rotated set �̂

(ψ)

β,pq =
�̂

(C)
ψ �̂

(0)
β,pq�̂

(C)
ψ . Then, we construct the analog of the superbosonization formula and the

generalized Hubbard–Stratonovich transformation.

Theorem 7.1. Let F be the superfunction as in theorem 4.1 and

κ = a − c + 1

γ1
− b − d + 1

γ2
. (7.11)

Also, let e ∈ N0 and

ã = a + γ1e and b̃ = b + γ2e (7.12)

with

ã � c b̃ � d. (7.13)

We choose the Wick-rotation eıψ such that all integrals are convergent. Then, we have∫
R

F(B̂ψ) exp(−ε Str B̂ψ) d[V̂ ] =
(

− 2

γ1

)γ2ec
(

2

γ2

)γ1ed ∫
R̃

F(B̃ψ) exp(−ε Str B̃ψ) d[Ṽ ]

= CSF

∫
�

0(c)
β,cd

∫
�̂

0(c)
4/β,dc

d[ρ(2)] d[ρ(1)]F(ρ(1) + eıψρ(2)) exp[−ε Str(ρ(1) + eıψρ(2))]

× Sdetκ+b̃/γ2ρ(1)Sdetκ−ã/γ1ρ(2) (7.14)

= CHS

∫
�

(0)
β,cd

∫
�̂

(0)
4/β,cd

d[ρ(2)] d[ρ(1)]
δ
(
r

(1)
2

)∣∣�d

(
r

(1)
2

)∣∣4/β

δ
(
r

(2)
1

)∣∣�c

(
r

(2)
1

)∣∣β
× detκ+b/γ2ρ

(1)
1 deta/γ1−κρ

(2)
2

(
D

(4/β)

dr
(1)
2

)ã−c(
D

(β)

cr
(2)
1

)b̃−d
F (ρ̂(1) + eıψ ρ̂(2))

× exp
[−ε Str(ρ̂(1) + eıψ ρ̂(2))

]
, (7.15)

where the constants are

CSF = (−1)c(b−d) eıψ(ãd−b̃c)

(
2

γ1

)γ2ec
(

2

γ2

)γ1ed

C
(β)

ãcdC
(4/β)

b̃dc
, (7.16)

CHS = (−1)d(a−c) eıψ(ãd−b̃c)

(
− 2

γ1

)γ2ec
(

− 2

γ2

)γ1ed

C̃
(β)

ãcd C̃
(4/β)

b̃dc
. (7.17)

Here, we define the supermatrix

ρ̂(1) + eıψ ρ̂(2) =
[
ρ

(1)
1 + eıψ

(
ρ

(2)
1 − ρ

(2)
η̃ ρ

(2)−1
2 ρ

(2)†
η̃

)
ρ(1)

η + eıψρ
(2)
η̃

−ρ(1)†
η − eıψρ

(2)†
η̃ ρ

(1)
2 − ρ(1)†

η ρ
(1)−1
1 ρ(1)

η + eıψρ
(2)
2

]
(7.18)

The set R̃ is given as in corollary 3.2. The measures d[ρ(1)] = d
[
ρ

(1)
1

]
d
[
ρ

(1)
2

]
d[η] and

d[ρ(2)] = d
[
ρ

(2)
1

]
d
[
ρ

(2)
2

]
d[η̃] are given by theorem 4.1. The measures (4.11) for β and 4/β

assign d
[
ρ

(1)
1

]
and d

[
ρ

(2)
2

]
in equations (7.14) and (7.15), respectively. In equation (7.14),

d
[
ρ

(1)
2

]
and d

[
ρ

(2)
1

]
are defined by the measure (4.12) for the cases β and 4/β, respectively,
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and, in equation (7.15), they are defined by the measure (4.11) for the cases 4/β and β,
respectively. The measures d[η] and d[η̃] are the product of all complex Grassmann pairs as
in equation (4.13).

Since this theorem is a consequence of corollary 3.2 and theorems 4.1 and 5.1, the proof is
quite simple.

Proof. Let e ∈ N0 as in equation (7.12). Then, we use corollary 3.2 to extend the integral over
V̂ to an integral over Ṽ . We split the supersymmetric Wishart-matrix B̂ as in equation (7.8).
Both Wishart-matrices B̂1 and B̂2 fulfil the requirement (4.8) according to their dimension.
Thus, we singly apply both theorems 4.1 and 5.2 to B̂1 and B̂2. �

Our approach of a violation of inequality (4.8) is quite different from the solution given in
[31]. These authors introduce a matrix which projects the boson–boson block and the bosonic
side of the off-diagonal blocks onto a space of the smaller dimension a. Then, they integrate
over all of such orthogonal projectors. This integral becomes more difficult due to an additional
measure on a curved, compact space. We use a second symmetric supermatrix. Hence, we
have up to the dimensions of the supermatrices a symmetry between both supermatrices
produced by S. There is no additional complication for the integration, since the measures of
both supermatrices are of the same kind. Moreover, our approach extends the results to the
case of β = 4 and odd b which is not considered in [31].

8. Remarks and conclusions

We proved the equivalence of the generalized Hubbard–Stratonovich transformation [15, 21]
and the superbosonization formula [19, 20]. Thereby, we generalized both approaches. The
superbosonization formula was proven in a new way and is now extended to odd dimensional
supersymmetric Wishart–matrices in the fermion–fermion block for the quaternionic case. The
generalized Hubbard–Stratonovich transformation was here extended to arbitrary dimensional
supersymmetric Wishart-matrices which not only stem of averages over the matrix Green
functions [8, 15, 22, 27]. Furthermore, we got an integral identity beyond the restriction of the
matrix dimension, see equation (4.8). This approach distinguishes from the method presented
in [31] by the integration of an additional matrix. It is, also, applicable on the artificial example
β = 4 and odd b which has not been considered in [31].

The generalized Hubbard–Stratonovich transformation and the superbosonization formula
reduce in the absence of Grassmann variables to the ordinary integral identity for ordinary
Wishart-matrices [20, 29]. In the general case with the restriction (4.8), both approaches
differ in the fermion–fermion block integration. Due to the Dirac-distribution and the
differential operator, the integration over the non-compact domain in the generalized Hubbard–
Stratonovich transformation is equal with the help of the residue theorem to a contour
integral. This contour integral is equivalent to the integration over the compact domain
in the superbosonization formula. Hence, we found an integral identity between a compact
integral and a differentiated Dirac-distribution.
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Appendix A. Proof of theorem 4.1 (superbosonization formula)

First, we consider two particular cases. Let d = 0 and a � c be an arbitrary positive integer.
Then, we find

B̂ ∈ �0
β,c0 = �

0(†)
β,c0 = �

0(c)
β,c0 ⊂ Herm(β, c). (A.1)

We introduce a Fourier-transformation∫
Rβac

F (B̂) exp(−ε tr B̂) d[V̂ ] =
( γ2

2π

)c (γ2

π

)βc(c−1)/2

×
∫

Herm (β,c)

∫
Rβac

FF(σ1) exp
(
ı tr B̂σ +

1

)
d[V̂ ] d[σ1], (A.2)

where the measure d[σ1] is defined as in equation (4.10) and σ +
1 = σ1 + ıε11γ2c. The Fourier-

transform is

FF(σ1) =
∫

Herm (β,c)

F (ρ1) exp(−ı tr ρ1σ1)d[ρ1]. (A.3)

The integration over the supervectors, which are in this particular case ordinary vectors, yields∫
Rβac

exp
(
ı tr B̂σ +

1

)
d[V̂ ] = det

(
σ +

1

ıγ1π

)−a/γ1

. (A.4)

The Fourier transform of this determinant is an Ingham–Siegel integral [40, 41]∫
Herm (β,c)

exp(−ı tr ρ1σ1)det
(−ıσ +

1

)−a/γ1 d[σ1] = G
(β)
a−c,c det ρκ

1 exp(−ε tr ρ1)�(ρ1), (A.5)

where the constant is

G
(β)
a−c,c =

(γ2

π

)γ2cκ
a∏

j=a−c+1

2πβj/2

�(βj/2)
(A.6)

and the exponent is

κ = a − c + 1

γ1
− 1

γ2
. (A.7)

�(.) is Euler’s gamma-function. This integral was recently used in random matrix theory [29]
and is normalized in our notation as in [21]. Thus, we find for equation (A.2)∫

Rβac

F (B̂) exp(−ε tr B̂) d[V̂ ] = C
(β)

ac0

∫
�

0(c)
β,c0

F(ρ) exp(−ε tr ρ1) det ρκ
1 d[ρ1], (A.8)

which verifies this theorem. The product in the constant

C
(β)

ac0 = 2−cγ̃ βac/2 vol(U(β)(a))

vol(U(β)(a − c))
(A.9)

is a ratio of group volumes.
In the next case, we consider c = 0 and arbitrary d. We see that

B̂ ∈ �
(†)
β,0d (A.10)

is true. We integrate over∫
�2ad

F (B̂) exp(ε tr B̂) d[V̂ ], (A.11)

where the function F is analytic. As in [19], we expand F(B̂) exp(ε tr B̂) in the entries of
B̂ and, then, integrate over every single term of this expansion. Every term is a product of
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B̂’s entries and can be generated by differentiation of (tr AB̂)n with respect to A ∈ �
0(†)
β,0d for

certain n ∈ N. Thus, it is sufficient to prove the integral theorem∫
�2ad

(tr AB̂)nd[V̂ ] = C
(β)

a0d

∫
�

0(c)
β,0d

(tr Aρ2)
n det ρ−κ

2 d[ρ2]. (A.12)

Since �
0(†)
β,0d is generated of �

0(c)
β,0d by analytic continuation in the eigenvalues, it is convenient

that A ∈ �
0(c)
β,0d . Then, A−1/2 is well defined and A−1/2ρ2A

−1/2 ∈ �
0(c)
β,0d . We transform in

equation (A.13)

V̂ → A−1/2V̂ , V̂ † → V̂ †A−1/2 and ρ2 → A−1/2ρ2A
−1/2. (A.13)

The measures turn under this change into

d[V̂ ] → det Aa/γ1d[V̂ ] and (A.14)

d[ρ2] → det A−κ+a/γ1d[ρ2], (A.15)

where the exponent is

κ = a + 1

γ1
+

d − 1

γ2
. (A.16)

Hence, we have to calculate the remaining constant defined by∫
�2ad

(tr B̂)n d[V̂ ] = C
(β)

a0d

∫
�

0(c)
β,0d

(tr ρ2)
n det ρ−κ

2 d[ρ2]. (A.17)

This equation holds for arbitrary n. Then, this must also be valid for F(B̂) = ε = 1 in
equation (A.11). The right-hand side of equation (A.11) is∫

�2ad

exp(tr B̂) d[V̂ ] = (−2π)−ad . (A.18)

On the left-hand side, we first integrate over the group U(4/β) (d) and get∫
�

0(c)
β,0d

exp(tr ρ2) det ρ−κ
2 d[ρ2] (A.19)

= FU(4/β)

d

∫
[0,2π]d

|�d(e
ıϕj )|4/β

d∏
n=1

exp(γ1 eıϕn ) e−ıϕn(γ1κ−1) dϕn

2π
. (A.20)

We derive this integral with the help of Selberg’s integral formula [14]. We assume that
β̃ = 4/β and γ1κ are arbitrary positive integers and β̃ is even. Then, we omit the absolute
value and equation (A.20) becomes∫

�
0(c)
β,0d

exp(tr ρ2) det ρ−κ
2 d[ρ2] = FU(β)

d �
β̃

d

(
1

γ1

∂

∂λj

) d∏
n=1

(γ1λn)
γ1κ−1

� (γ1κ)

∣∣∣∣
λ=1

. (A.21)

We consider another integral which is the Laguerre version of Selberg’s integral [14]∫
R

d
+

�
β̃

d (x)

d∏
n=1

exp(−γ1xn)x
ξ
n dxn = �

β̃

d

(
− 1

γ1

∂

∂λj

) d∏
n=1

�(ξ + 1)(γ1λn)
−ξ−1

∣∣∣∣
λ=1

=
d∏

n=1

�(1 + nβ̃/2)�(ξ + 1 + (n − 1)β̃/2)

γ
ξ+1+β̃(d−1)/2
1 �(1 + β̃/2)

, (A.22)
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where ξ is an arbitrary positive integer. Since β̃ is even the minus sign in the Vandermonde
determinant vanishes. Equations (A.21) and (A.22) are up to the Gamma-functions
polynomials in κ and ξ . We recall that (A.22) is true for every complex ξ . Let Re ξ > 0, we
have∣∣∣∣∣�β̃

d

(
− 1

γ1

∂

∂λj

) d∏
n=1

(γ1λn)
−ξ−1

�(ξ + 1 + (n − 1)β̃/2)

∣∣∣∣∣
λ=1

∣∣∣∣∣ � const < ∞ and (A.23)

∣∣∣∣∣γ −d(ξ+1+β̃(d−1)/2)

1

d∏
n=1

�(1 + nβ̃/2)

�(ξ + 1)�(1 + β̃/2)

∣∣∣∣∣ � const < ∞. (A.24)

The functions are bounded and regular for Re ξ > 0 and we can apply Carlson’s theorem [14].
We identify ξ = −γ1κ and find∫

�
0(c)
β,0d

exp(tr ρ2) det ρ−κ
2 d[ρ2] = γ ad

1 FU(4/β)

d

d∏
n=1

�(1 + nβ̃/2)�(1 − γ1κ + (n − 1)β̃/2)

�(1 + β̃/2)�(γ1κ)�(1 − γ1κ)
.

(A.25)

Due to Euler’s reflection formula �(z)�(1 − z) = π/ sin(πz), this equation simplifies to∫
�

0(c)
β,0d

exp (tr ρ2) det ρ−κ
2 d[ρ2] = γ ad

1 FU(4/β)

d

d∏
n=1

ı4(n−1)/β� (1 + 2n/β)

� (1 + 2/β) � (γ1κ − 2(n − 1)/β)
(A.26)

or equivalent

2β̃d(d−1)/2
∫

[0,2π]d

∏
1�n<m�d

∣∣∣∣sin

(
ϕn − ϕm

2

)∣∣∣∣β̃ d∏
n=1

exp(γ1 eıϕn ) e−ıϕna
dϕn

2π

= γ ad
1

d∏
n=1

�(1 + nβ̃/2)

�(1 + β̃/2)�(a + 1 + (n − 1)β̃/2)
. (A.27)

Since a is a positive integer for all positive and even β̃, the equations above are true for all
such β̃. For constant natural numbers a, d, γ1 and complex β̃ with Re β̃ > 0, the inequalities∣∣∣∣∣∣
∫

[0,2π]d

∏
1�n<m�d

∣∣∣∣sin

(
ϕn − ϕm

2

)∣∣∣∣β̃ d∏
n=1

exp(γ1 eıϕn ) e−ıϕna
dϕn

2π

∣∣∣∣∣∣
�

∫
[0,2π]d

∏
1�n<m�d

∣∣∣∣sin

(
ϕn − ϕm

2

)∣∣∣∣Re β̃ d∏
n=1

exp(γ1 cos ϕn)
dϕn

2π
< ∞ and

(A.28)

∣∣∣∣∣2−β̃d(d−1)/2γ ad
1

d∏
n=1

�(1 + nβ̃/2)

�(1 + β̃/2)�(a + 1 + (n − 1)β̃/2)

∣∣∣∣∣
� const 2−Re β̃d(d−1)/2 < ∞ (A.29)

are valid and allow us with Carlson’s theorem to extend equation (A.27) to every complex β̃,
in particular to β̃ = 1. Thus, we find for the constant in equation (A.17)

Ca0d = (−2πγ1)
−ad

[
d∏

n=1

ı4(n−1)/βπ2(n−1)/β

�(a + 1 + 2(n − 1)/β)

]−1

. (A.30)
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Now, we consider arbitrary d and a � c and split


(C)
j1 =

[
xj

χj

]
(A.31)

and

B̂ = 1

γ̃

a∑
j=1


(C)
j1 

(C)†
j1 =

⎡⎢⎢⎢⎢⎢⎣
a∑

j=1

xj x†
j

γ̃

a∑
j=1

xjχ
†
j

γ̃

a∑
j=1

χj x†
j

γ̃

a∑
j=1

χjχ
†
j

γ̃

⎤⎥⎥⎥⎥⎥⎦ =
[
B11 B12

B21 B22

]
(A.32)

such that xj contains all commuting variables of 
(C)
j1 and χj depends on all Grassmann

variables. Then, we replace the sub-matrices B12, B21 and B22 by Dirac-distributions∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C1

∫
Herm (4/β,d)2

∫
R

∫
(�2cd )2

d[η] d[η̃] d[V̂ ] d[ρ̃2] d[σ2]

×F

([
B11 ρη

−ρ†
η ρ̃2

])
exp

[−ε Str B − ı
(

tr
(
ρ†

η + B21
)
ση̃

+ tr σ
†
η̃ (ρη − B12) − tr(ρ̃2 − B22)σ2

)]
, (A.33)

where

C1 =
(

2π

γ̃

)2cd (γ1

π

)2d(d−1)/β ( γ1

2π

)d

. (A.34)

The matrices ρη and ση̃ are rectangular matrices depending on Grassmann variables as
in the boson–fermion and fermion–boson block in the sets (4.1)–(4.3). Shifting χj →
χj +

(
σ +

2

)−1
σ
†
η̃xj and χ

†
j → χ

†
j − x†

j ση̃

(
σ +

2

)−1
, we get∫

R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C1

∫
Herm (4/β,d)2

∫
R

∫
(�2cd )2

d[η] d[η̃] d[V̂ ] d[ρ̃2] d[σ2]

×F

([
B11 ρη

−ρ†
η ρ̃2

])
exp

[−ε Str B − ı
(

tr σ
†
η̃B11ση̃

(
σ +

2

)−1

+ tr ρ†
ηση̃ + tr σ

†
η̃ ρη − tr(ρ̃2 − B22)σ2

)]
. (A.35)

This integral only depends on B11 and B22. Thus, we apply the first case of this proof and
replace B11. We find∫

R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C
(β)

ac0C1

∫
Herm (4/β,d)2

∫
R

∫
(�2cd )2

d[χ ] d[η] d[η̃] d[ρ1] d[ρ̃2] d[σ2]

×F

([
B11 ρη

−ρ†
η ρ̃2

])
det ρκ̃

1 exp
[
ε(tr B22 − tr ρ1) + ı

(
tr σ

†
η̃ ρ1ση̃

(
σ +

2

)−1

− tr ρ†
ηση̃ − tr σ

†
η̃ ρη + tr(ρ̃2 − B22)σ2

)]
(A.36)

with the exponent

κ̃ = a − c + 1

γ1
− 1

γ2
. (A.37)

After another shifting ση̃ → ση̃ − ρ−1
1 ρησ

+
2 and σ

†
η̃ → σ

†
η̃ − σ +

2 ρ†
ηρ

−1
1 , we integrate over d[η̃]
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and B22 and have∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C
(β)

ac0C2

∫
�

0(c)
β,c0

∫
Herm (4/β,d)2

∫
�2cd

d[η] d[ρ1] d[ρ̃2] d[σ2]

×F

([
ρ1 ρη

−ρ†
η ρ̃2

])
det ρκ

1 det
(
σ +

2

)(a−c)/γ1

× exp
[−ε tr ρ1 + ı

(
tr ρ†

ηρ
−1
1 ρησ

+
2 + tr ρ̃2σ2

)]
, (A.38)

where the exponent is

κ = a − c + 1

γ1
+

d − 1

γ2
(A.39)

and the new constant is

C2 =
( ı

2π

)ad
(

2π

γ̃ ı

)cd (γ1

π

)2d(d−1)/β ( γ1

2π

)d

. (A.40)

We express the determinant in σ +
2 as in section 2 as Gaussian integrals and define

a new (γ2(a − c) + 0)× (0 + γ1d) rectangular supermatrix V̂new and its corresponding
(0 + γ1d)× (0 + γ1d) supermatrix B̂new = γ̃ −1V̂newV̂

†
new. Integrating σ2 and ρ2, equation

(A.38) becomes∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = γ̃ −cdC
(β)

ac0

∫
�

0(c)
β,c0

∫
�2(a−c)d

F

([
ρ1 ρη

−ρ†
η B̂new − ρ†

ηρ
−1
1 ρη

])
× exp

(−ε tr ρ1 + ε tr
(
B̂new − η†ρ−1

1 η
))

det ρκ
1 d[V̂new] d[η] d[ρ1]. (A.41)

Now, we apply the second case in this proof and shift ρ2 → ρ2 + ρ†
ηρ

−1
1 ρη by analytic

continuation. We get the final result∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C
(β)

acd

∫
�

0(c)
β,cd

F (ρ) exp(−ε Str ρ)Sdetρκ d[ρ] (A.42)

with

C
(β)

acd = γ̃ −cdC
(β)

ac0C
(β)

a−c,0d

= (−2πγ1)
−ad

(
−2π

γ2

)cd

2−cγ̃ βac/2 vol(U(β)(a))

vol(U(β)(a − c))

d∏
n=1

� (γ1κ + 2(n − d)/β)

ı4(n−1)/βπ2(n−1)/β

= ı−2d(d−1)/β (2π)d γ̃ βac/2−cd

(−2)(c−a)d2c

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2d2
vol(U(1)(a))

vol(U(1)(a − c + 2d))
, β = 1

vol(U(2)(a)

vol(U(2)(a − c + d))
, β = 2

2−(2a+1−c)cvol(U(1)(2a + 1))

vol(U(1)(2(a − c) + d + 1))
, β = 4.

(A.43)

Appendix B. Proof of theorem 5.1 (generalized Hubbard–Stratonovich transformation)

We choose a Wick-rotation eıψ that all calculations below are well defined. Then, we perform
a Fourier transformation∫

R

F(B̂) exp(−ε Str B̂)d[V̂ ] = C̃1

∫
�̃

(−ψ)

β,cd

∫
R

FF(σ) exp(ı Str B̂σ +)d[V̂ ] d[σ ], (B.1)
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where σ + = σ + ıε11γ2c+γ1d ,

FF(σ) =
∫

�̃
(ψ)

β,cd

F (ρ) exp(−ı Str ρσ) d[ρ], (B.2)

and the constant is

C̃1 =
(

2π

γ̃

)2cd ( γ2

2π

)c (γ2

π

)βc(c−1)/2 ( γ1

2π

)d (γ1

π

)2d(d−1)/β

. (B.3)

The integration over V̂ yields∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C̃2

∫
�̃

(−ψ)

β,cd

FF(σ)Sdet−a/γ1σ + d[σ ] (B.4)

with

C̃2 =
(

2π

γ̃

)2cd ( γ2

2π

)c (γ2

π

)βc(c−1)/2 ( γ1

2π

)d (γ1

π

)2d(d−1)/β ( ı

2π

)ad

(γ1πı)βac/2 . (B.5)

We transform this result back by a Fourier-transformation∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C̃2

∫
�̃

(ψ)

β,cd

F (ρ)I
(β,a)

cd (ρ) exp(−ε Str ρ)d[ρ], (B.6)

where we have to calculate the supersymmetric Ingham–Siegel integral

I
(β,a)

cd (ρ) =
∫

�̃
(−ψ)

β,cd

exp(−ı Str ρσ +)Sdet−a/γ1σ + d[σ ]. (B.7)

This distribution is rotation invariant under U(β)(c/d). The ordinary version, d = 0, of
equation (B.6) is equation (A.5).

After performing four shifts

σ1 → σ1 − ση̃

(
σ2 + ı eıψε11γ1d

)−1
σ
†
η̃ , (B.8)

ση̃ → ση̃ − ρ−1
1 ρη

(
σ2 + ı eıψε11γ1d

)
, (B.9)

σ
†
η̃ → σ

†
η̃ − (

σ2 + ı eıψε11γ1d

)
ρ†

ηρ
−1
1 , (B.10)

ρ2 → ρ2 − ρ†
ηρ

−1
1 ρη, (B.11)

and defining

ρ̂ =
[

ρ1 eıψ/2ρη

−eıψ/2ρ†
η eıψ

(
ρ2 − ρ†

ηρ
−1
1 ρη

)] , (B.12)

we find∫
R

F(B̂) exp(−ε Str B̂) d[V̂ ] = C̃2

∫
�̃

(ψ)

β,cd

F (ρ̂) Ĩ (ρ) exp (−ε Str ρ̂) d[ρ], (B.13)

where

Ĩ (ρ) =
∫

�̃
(−ψ)

β,cd

exp
[
ε Str ρ − ı

(
tr ρ1σ1 − tr ρ2σ2 + tr σ

†
η̃ ρ1ση̃

(
σ2 + ı eıψε11γ1d

)−1)]
×

(
det

(
e−ıψσ2 + ıε11γ1d

)
det(σ1 + ıε11γ2c)

)a/γ1

d[σ ]. (B.14)

20



J. Phys. A: Math. Theor. 42 (2009) 275206 M Kieburg et al

We integrate over d[η̃] and apply equation (A.5) for the d[σ1]-integration. Then,
equation (B.14) reads

Ĩ (ρ) = C̃3 e−ıψcd det ρκ
1 �(ρ1)

∫
Herm (4/β,d)

exp(−ı tr ρ2(σ2 + ı eıψε11γ1d))

× det(e−ıψσ2 + ıε)(a−c)/γ1 d[σ2] (B.15)

with the constant

C̃3 = ı−βac/2

(
γ̃

2πı

)cd

G
(β)
a−c,c, (B.16)

see equation (A.6). The exponent κ is the same as in equation (4.7). As in [21], we decompose
σ2 in angles and eigenvalues and integrate over the angles. Thus, we get the ordinary matrix
Bessel-function

ϕ
(4/β)

d (r2, s2) =
∫

U(4/β)(d)

exp(ı tr r2Us2U
†) dμ(U) (B.17)

in equation (B.15) which are only for certain β and d explicitly known. However, the analog
of the Sekiguchi differential operator for the ordinary matrix Bessel-functions D

(4/β)

dr2
, see

equation (5.3), fulfils the eigenvalue equation

D
(4/β)

dr2
ϕ

(4/β)

d (r2, s2) = (ıγ1)
d det s1/γ1

2 ϕ
(4/β)

d (r2, s2). (B.18)

Since the determinant of σ2 stands in the numerator, we shift σ2 → σ2 − ı eıψε11γ1d and replace
the determinants in equation (B.15) by D

(4/β)

dr2
. After an integration over σ2, we have

Ĩ (ρ) = C̃4 e−ıψcd det ρκ
1 �(ρ1)

(
e−ıψdD

(4/β)

dr2

)a−c δ(r2)

|�d(eıψ r2)|4/β
. (B.19)

The constant is

C̃4 = ı−βac/2

(
γ̃

2πı

)cd

G
(β)
a−c,c(ıγ1)

(c−a)d

(
π

γ1

)2d(d−1)/β (
2π

γ1

)d 1

FU(4/β)

d

. (B.20)

Summarizing the constants (B.5) and (B.20), we get

C̃
(β)

acd = C̃2C̃4 = 2−c(2πγ1)
−ad

(
2π

γ2

)cd

γ̃ βac/2 vol(U(β)(a))

vol(U(β)(a − c))FU(4/β)

d

. (B.21)

Due to the Dirac-distribution, we shift D
(4/β)

dr2
from the Dirac-distribution to the superfunction

and remove the Wick-rotation. Hence, we find the result of the theorem.

Appendix C. Proof of theorem 6.1 (equivalence of both approaches)

We define the function

F̃ (r2) =
∫

U4/β (d)

∫
Herm (β,c)

∫
�2cd

F

([
ρ1 ρη

−ρ†
η Ur2U

† − ρ†
ηρ

−1
1 ρη

])
× exp

[−ε(tr ρ1 − tr
(
r2 − ρ†

ηρ
−1
1 ρη

)]
detκρ1 d[η] d[ρ1] dμ(U). (C.1)

Then, we have to prove

C
(β)

acd

∫
[0,2π]d

F̃ (eıϕj )|�d(e
ıϕj )|4/β

d∏
n=1

eı(1−κ)ϕn dϕn

2π
= C̃

(β)

acd

(
(−1)dD

(4/β)

dr2

)a−c
F̃ (r2)

∣∣
r2=0.

(C.2)
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Since F̃ is permutation invariant and a Schwartz-function, we express F̃ as an integral over
ordinary matrix Bessel-functions,

F̃ (r2) =
∫

Rd

g(q)ϕ
(4/β)

d (r2, q)|�d(q)|4/β dq, (C.3)

where g is a Schwartz-function. The integral and the differential operator in equation (C.2)
commute with the integral in equation (C.3). Thus, we only need to prove

C
(β)

acd

∫
[0,2π]d

ϕ
(4/β)

d (eıϕj , q)|�d(e
ıϕj )|4/β

d∏
n=1

eı(1−γ1κ)ϕn dϕn

2π

= C̃
(β)

acd

(
(−1)dD

(4/β)

dr2

)a−c
ϕ

(4/β)

d (r2, q)
∣∣
r2=0 (C.4)

for all q ∈ Sd
1 where S1 is the unit-circle in the complex plane. The right-hand side of this

equation is with the help of equation (B.18)(
D

(4/β)

dr2

)a−c
ϕ

(4/β)

d (r2, q)
∣∣
r2=0 = (−ıγ1)

d(a−c) det q(a−c)/γ1 . (C.5)

The components of q are complex phase factors. The integral representation of the ordinary
matrix Bessel-functions (B.17) and the d[ϕ]-integral in equation (C.4) form the integral over
the circular ensembles CU(4/β)(d). Thus, q can be absorbed by eıϕj and we find∫

[0,2π]d
ϕ

(4/β)

d (eıϕj , q)|�d(e
ıϕj )|4/β

d∏
n=1

eı(1−γ1κ)ϕn dϕn

2π

= det q(a−c)/γ1

∫
[0,2π]d

ϕ
(4/β)

d (eıϕj , 1)|�d(e
ıϕj )|4/β

d∏
n=1

eı(1−γ1κ)ϕn dϕn

2π
. (C.6)

The ordinary matrix Bessel-function is at q = 1 the exponential function

ϕ
(4/β)

d (eıϕj , 1) = exp

(
ıγ1

d∑
n=1

eıϕn

)
. (C.7)

With equation (A.27), the integral on the left-hand side in equation (C.6) yields with this
exponential function∫

[0,2π]d
|�d(e

ıϕj )|4/β

d∏
n=1

eı(1−γ1κ)ϕnexp(ıγ1 eıϕn )dϕn

2π

= (ıγ1)
(a−c)d

d∏
n=1

ı4(n−1)/β� (1 + 2n/β)

� (1 + 2/β) � (a − c + 1 + 2(n − 1)/β)
(C.8)

= (ıγ1)
(a−c)d

FU(4/β)

d

d∏
n=1

ı4(n−1)/βπ2(n−1)/β

� (a − c + 1 + 2(n − 1)/β)
.

Hence, the normalization on both sides in equation (C.2) is equal.

References

[1] Efetov K B 1983 Adv. Phys. 32 53
[2] Verbaarschot J J M and Zirnbauer M R 1985 J. Phys. A: Math. Gen. 17 1093
[3] Verbaarschot J J M, Weidenmüller H A and Zirnbauer M R 1985 Phys. Rep. 129 367
[4] Efetov K B 1997 Supersymmetry in Disorder and Chaos 1st edn (Cambridge: Cambridge University Press)
[5] Brezin E and Zee A 1993 Nucl. Phys. B 402 613

22

http://dx.doi.org/10.1080/00018738300101531
http://dx.doi.org/10.1088/0305-4470/18/7/018
http://dx.doi.org/10.1016/0370-1573(85)90070-5
http://dx.doi.org/10.1016/0550-3213(93)90121-5


J. Phys. A: Math. Theor. 42 (2009) 275206 M Kieburg et al

[6] Brezin E and Zee A 1993 C. R. Acad. Sci. 17 735
[7] Hackenbroich G and Weidenmüller H A 1995 Phys. Rev. Lett. 74 4118
[8] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 189
[9] Beenakker C W J 1997 Rev. Mod. Phys. 69 733

[10] Mirlin A D 2000 Phys. Rep. 326 259
[11] Ambjørn J, Jurkiewicz J and Makeenko Yu M 1993 Phys. Lett. B 251 517
[12] Brezin E, Itzykson C, Parisi G and Zuber J 1978 Commun. Math. Phys. 59 35
[13] Laloux L, Cizeau P, Bouchard J P and Potters M 1999 Phys. Rev. Lett. 83 1467
[14] Mehta M L 2004 Random Matrices 3rd edn (New York: Academic)
[15] Guhr T 2006 J. Phys. A: Math. Gen. 39 13191
[16] Toscano F, Vallejos R O and Tsallis C 2004 Phys. Rev. E 69 066131
[17] Bertuola A C, Bohigas O and Pato M P 2004 Phys. Rev. E 70 065102
[18] Abul-Magd Y A 2004 Phys. Lett. A 333 16
[19] Sommers H-J 2007 Acta Phys. Pol. B 38 1001
[20] Littelmann P, Sommers H-J and Zirnbauer M R 2008 Commun. Math. Phys. 283 343
[21] Kieburg M, Grönqvist J and Guhr T 2009 J. Phys. A: Math. Theor. 42 275205
[22] Kieburg M, Kohler H and Guhr T 2009 J. Phys. A: Math. Theor. 50 013528
[23] Akemann G and Fyodorov Y V 2003 Nucl. Phys. B 664 457
[24] Akemann G and Pottier A 2004 J. Phys. A: Math. Gen. 37 L453
[25] Borodin A and Strahov E 2005 Commun. Pure Appl. Math. 59 161
[26] Brezin E and Hikami S 2000 Commun. Math. Phys. 214 111
[27] Zirnbauer M R 2006 The Supersymmetry Method of Random Matrix Theory, Encyclopedia of Mathematical

Physics vol 5, ed J-P Franoise, G L Naber and S T Tsou (Oxford: Elsevier) p 151
[28] Mehta M L and Normand J-M 2001 J. Phys. A: Math. Gen. 34 1
[29] Fyodorov Y V 2002 Nucl. Phys. B 621 643
[30] Berezin F A 1987 Introduction to Superanalysis 1st edn (Dordrecht: Reidel)
[31] Bunder J E, Efetov K B, Kravtsov K B, Yevtushenko O M and Zirnbauer M R 2007 J. Stat. Phys. 129 809
[32] Zirnbauer M R 1996 J. Math. Phys. 37 4986
[33] Kohler H and Guhr T 2005 J. Phys. A: Math. Gen. 38 9891
[34] Wegner F 1983 unpublished notes
[35] Constantinescu F 1988 J. Stat. Phys. 50 1167
[36] Constantinescu F and de Groote H F 1989 J. Math. Phys. 30 981
[37] Sommers H-J 2008 lecture notes (www.sfbtr12.uni-koeln.de)
[38] Okounkov A and Olshanski G 1997 Math. Res. Lett. 4 69
[39] Basile F and Akemann G 2007 J. High Energy Phys. JHEP12(2007)043
[40] Ingham A E 1933 Proc. Camb. Phil. Soc. 29 271
[41] Siegel C L 1935 Ann. Math. 36 527

23

http://dx.doi.org/10.1103/PhysRevLett.74.4118
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1007/BF01614153
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1088/0305-4470/39/42/002
http://dx.doi.org/10.1103/PhysRevE.69.066131
http://dx.doi.org/10.1103/PhysRevE.70.065102
http://dx.doi.org/10.1016/j.physleta.2004.09.082
http://dx.doi.org/10.1007/s00220-008-0535-0
http://dx.doi.org/10.1016/S0550-3213(03)00458-9
http://dx.doi.org/10.1088/0305-4470/37/37/L01
http://dx.doi.org/10.1002/cpa.20092
http://dx.doi.org/10.1007/s002200000256
http://dx.doi.org/10.1088/0305-4470/34/22/304
http://dx.doi.org/10.1016/S0550-3213(01)00508-9
http://dx.doi.org/10.1007/s10955-007-9405-y
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1088/0305-4470/38/46/001
http://dx.doi.org/10.1007/BF01019159
http://dx.doi.org/10.1063/1.528343
http://www.sfbtr12.uni-koeln.de
http://dx.doi.org/10.1088/1126-6708/2007/12/043
http://dx.doi.org/10.1017/S0305004100011075
http://dx.doi.org/10.2307/1968644

	1. Introduction
	2. Ratios of characteristic polynomials
	3. Supersymmetric Wishart-matrices and some of their properties
	4. The superbosonization formula
	5. The generalized Hubbard--Stratonovich transformation
	6. Equivalence of and connections between the two approaches
	7. The general case
	8. Remarks and conclusions
	Acknowledgments
	Appendix A. Proof of theorem
	Appendix B. Proof of
	Appendix C. Proof of
	References

